Advanced Query Language (DSL)
The Advanced Query feature uses a Domain-Specific Language (DSL) to create dynamic, personalized filters for articles and recommendations. This powerful system allows you to build complex logic using variables, primitives, functions, and conditional statements to deliver relevant content based on user data and context.
Key Variables
These built-in variables provide essential context for your queries:
EMPTY
: Represents an empty result set. Use when you want to return no results under certain conditions.Example:
unread(articles) if user.age >= 18 else EMPTY
Returns unread articles for users 18+, otherwise returns nothing.
NOW
: Current date and time timestamp.TODAY
: Current date (without time component).articles
: Collection of all available articles. Use this for article-specific queries likeunread(articles)
,limit(articles, 5)
, orfilter(articles, tags="HR")
.recommendations
: Collection of all available recommendations. Use this for recommendation-specific queries likelimit(recommendations, 3)
, orfilter(recommendations, tags="exercise")
.
Data Primitives
Access user health data through the data
object structure:
Basic Metrics
data.<primitive>
: Access any recorded health metric (HeartRate, Weight, Temperature, etc.)data.<primitive>.value
: The actual recorded value (number or decimal)data.<primitive>.flags
: Severity level indicators with three levels:flags.gray
: Normal rangeflags.amber
: Warning levelflags.red
: Critical level
Complex Metrics
For metrics with multiple values:
data.BloodPressure.systolicValue
data.BloodPressure.diastolicValue
Functions
Core Functions
limit(collection: array, count: int)
Restricts the number of returned items from the specified collection.
Examples:
limit(unread(articles), 2)
- Shows maximum 2 unread articleslimit(recommendations, 3)
- Shows maximum 3 recommendations
unread(articles: array)
Filters to show only unread articles.
Example:
unread(articles)
Returns all unread articles.
filter(collection: array, tags: string)
Filters items by specific tags from the specified collection.
Examples:
filter(articles, tags="HR")
- Shows articles tagged with "HR"filter(recommendations, tags="exercise")
- Shows recommendations tagged with "exercise"
random(collection: array, count: int)
Returns a random selection from the specified collection.
Examples:
random(articles, 3)
- Shows 3 randomly selected articlesrandom(recommendations, 2)
- Shows 2 randomly selected recommendations
Conditional Logic
The DSL uses Python-style syntax for building complex conditions:
If/else Statements
Syntax: <result_if_true> if <condition> else <result_if_false>
Example:
filter(articles, tags="HR") if data.HeartRate.flags.red > 0 else limit(unread(articles), 2)
Shows heart rate articles if the last reading is critical, otherwise shows 2 unread articles.
Logical Operators
and
: Both conditions must be trueor
: Either condition can be true
Example:
unread(articles) if data.HeartRate.flags.amber or data.HeartRate.flags.red else random(recommendations, 2)
Returns unread articles if heart rate is in warning or critical range, otherwise shows 2 random recommendations.
Combination Operator
+
: Combines multiple article sets
Example:
filter(articles, tags="HR") + filter(recommendations, tags="sport")
Shows all articles tagged with "HR" plus all recommendations tagged with "sport".
Practical Examples
Basic Filtering
limit(unread(articles), 5)
limit(recommendations, 3)
Show 5 most recent unread articles, or 3 most recent recommendations.
Health-Based Filtering
filter(articles, tags="diabetes") if data.BloodSugar.flags.red else unread(articles)
Show diabetes articles if blood sugar is critical, otherwise show all unread articles.
Complex Conditions
filter(articles, tags="exercise") if data.HeartRate.value > 100 and data.Weight.flags.amber else limit(articles, 3)
Show exercise articles if heart rate is elevated and weight is in warning range, otherwise show 3 articles.
Combining Collections
filter(articles, tags="nutrition") + filter(recommendations, tags="diet")
Show nutrition articles combined with diet recommendations.
This guide provides a comprehensive understanding of how to leverage the Advanced Query feature using DSL. Use these tools to create personalized, context-aware queries that can target either articles or recommendations based on user health data and preferences.